MHD Stagnation-Point Flow of a Carreau Fluid and Heat Transfer in the Presence of Convective Boundary Conditions
نویسندگان
چکیده
In the present investigation we analyze the impact of magnetic field on the stagnation-point flow of a generalized Newtonian Carreau fluid. The convective surface boundary conditions are considered to investigate the thermal boundary layer. The leading partial differential equations of the current problem are altered to a set of ordinary differential equations by picking local similarity transformations. The developed non-linear ordinary differential equations are then numerically integrated via Runge-Kutta Fehlberg method after changing into initial value problems. This investigation explores that the momentum and thermal boundary layers are significantly influenced by various pertinent parameters like the Hartmann number M, velocity shear ratio parameter α, Weissenberg number We, power law index n, Biot number γ and Prandtl number Pr. The analysis further reveals that the fluid velocity as well as the skin friction is raised by the velocity shear ratio parameter. Moreover, strong values of the Hartmann number correspond to thinning of the momentum boundary layer thickness while quite the opposite is true for the thermal boundary layer thickness. Additionally, it is seen that the numerical computations are in splendid consent with previously reported studies.
منابع مشابه
Numerical Simulation of MHD Boundary Layer Stagnation Flow of Nanofluid over a Stretching Sheet with Slip and Convective Boundary Conditions
An investigation is carried out on MHD stagnation point flow of water-based nanofluids in which the heat and mass transfer includes the effects of slip and convective boundary conditions. Employing the similarity variables, the governing partial differential equations including continuity, momentum, energy, and concentration have been reduced to ordinary ones and solved by using...
متن کاملSpectral Quasi-linearization for MHD Nanofluid Stagnation Boundary Layer Flow due to a Stretching/Shrinking Surface
This article concentrates on the effect of MHD heat mass transfer on the stagnation point nanofluid flow over a stretching or shrinking sheet with homogeneous-heterogeneous reactions. The flow analysis is disclosed in the neighborhood of stagnation point. Features of heat transport are characterized with Newtonian heating. The homogeneous-heterogeneous chemical reaction between the fluid and di...
متن کاملMHD Three-Dimensional Stagnation-Point Flow and Heat Transfer of a Nanofluid over a Stretching Sheet
In this study, the three-dimensional magnetohydrodynamic (MHD) boundary layer of stagnation-point flow in a nanofluid was investigated. The Navier–Stokes equations were reduced to a set of nonlinear ordinary differential equations using a similarity transform. The similarity equations were solved for three types of nanoparticles: copper, alumina and titania with water as the base fluid, to inve...
متن کاملEffects of heat generation and thermal radiation on steady MHD flow near a stagnation point on a linear stretching sheet in porous medium and presence of variable thermal conductivity and mass transfer
The present paper was aimed to study the effects of variable thermal conductivity and heat generation on the flow of a viscous incompressible electrically conducting fluid in the presence of a uniform transverse magnetic field, thermal radiation, porous medium, mass transfer, and variable free stream near a stagnation point on a non-conducting stretching sheet. Equations of continuity, momentum...
متن کاملUnsteady boundary layer flow of a Casson fluid past a wedge with wall slip velocity
In this paper an analysis is presented to understand the effect of non–Newtonian rheology, velocity slip at the boundary, thermal radiation, heat absorption/generation and first order chemical reaction on unsteady MHD mixed convective heat and mass transfer of Casson fluid past a wedge in the presence of a transverse magnetic field with variable electrical conductivity. The partial differential...
متن کامل